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T he mathematical concept of fractals
| provides insights into complex anatomic
¥ branching structures that lack a charac-

teristic (single) length scale, and certain

complex physiologic processes, such as
heant rate regulation, thai lack 4 single time
scale. Heart rate conirol is pernturbed by
alterations in neurc-aulonomic function
in a number of important clinical
syndromes, including sudden cardiac
death, congestive failure, cocaine intoxi-
cation, fetal distress, space sickness and
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physiologic aging. These conditions are
associated with a loss of the normal fractal
complexity of interbeat interval
dynamics. Such changes, which may not
be detectable using conventional statis-
tics, can be quantified using new methods
derived from “chaos theory.”

hat Is o Fractal?

The term fractal, coined by the
mathematician B. Mandelbrot [1],
is currently used in three related contexts:
geometric, temporal (dynamical), and
statistical. In the most general terms,
fractals are defined by a property called
self-similarity [1-3]. Fractal objects are
composed of subunits that resemble the
larger scale shape. These subunits in
turn are composed of yet smaller units
that also look similar to the larger ones,
and so on. Fractals, therefore, do not
have a single length scale, but rather
have structure on multiple scales of

length (Fig. 1).

The term fractal also relates to the fact
that these irregular structures may have
a noninteger (fractional) dimension.
For example, the branching tracheo-
bronchial tree, a fractal-like structure,
has a dimension between 2 and 3, since
it converis a volume of gas in the
trachea (3 = 3} into something ap-
proaching a surface arca (D = 2) in the
alveoli,

The notion of self-similarity has also
been extended into temporal and
statistical domains. A temporal fractal
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1. The self-similar branchings of the His-Purkinje system constitute a fractal-like

network.

is a process that does not have a charac-
teristic scale of time, analogous to a fractal
structure that lacks a characteristic scale
of length. Instead, fractal processes have
self-similar fluctuations on multiple
scales of time, This property is reflected
by a type of broadband frequency spec-
trum. i.e., one having multiple frequen-
cies. The concept of temporal fractals is
closely related to that of “chaos.” Finally,
the fractal concept has been applied in a
statistical context. One example is the ir-
regular structure of the mammalian lung,
where there is a self-similar distribution of

scale sizes across multiple generations of
branchings [4, 5].

Heart's Fractal-like Anatomy

A number of cardiac structures have a

self-similar or fractal-like appearance
[6-8]. Examples of this nonlinear architec-
ture include the coronary arterial and
venous trees, the chordae tendineae, cer-
tain muscle bundles, and the His-Purkinje
network (Fig.1). The latter provides an
efficient way of distributing the
depolarization stimulus to the ventricles.
Recently, there has been interest in model-

ing the electrogenesis of the QRS complex
using a fractal-like conduction system, as
well as for studying alterations in the fre-
quency content of the normal QRS due to
changes in His-Purkinje geometry or in
myocardial conduction [6, 9, 10]. Abboud
and colleagues [8, 9] have shown that slow
conduction in myocardial cells activated
by such a fractal network can lead to “late
potentials” or to selective attenuation of
higher frequency content of the QRS,
simulating changes seen in ischemic
coronary syndromes.

Controversy surrounding the fractal
hypothesis of QRS electrogenesis centers
on two questions [11-12]:

1. Is the His-Purkinje system really a
fractal?

2. Does its macroscopic structure
actually relate in any way to the
frequency content of the QRS com-
plex?

Idealized (computer-generated) fractals
have infinite scales of length and literally
have no smallest scale. Physiologic frac-
tals are obviously bounded at both the
upper and lower ends. However, the
definition of a fractal does not require
infinite scales of length [3]. Furthermore,
it is also apparent that physiclogical frac-
tals are not identical on different scales of
magnification. However, structures such
has the tracheo-bronchial tree and the His-
Purkinje system do maintain a similarity
of dichotomous branching for which the
term “fractal-like” is mathematically ap-
propriate [1-8]. Interconnections between
branches of the His-Purkinje system,
which makes the system more than a
simple branching structure, also do not
undermine the fractal-like nature of the
geometry.

Spectral analysis of normal QRS com-
plexes reveals a broadband frequency
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2. Activation of a three-dimensional network Mmyucﬂi.al “cells™ by a self-similar conduction system (see Fig. 1) in a computer
mndf:l generates realistic QRS complexes (left panel), with a broadband frequency spectrum (middle panel) comparable to that
obtained from actual ECG data in healthy men (right panel). Computer model QRS and spectrum are from [9] and [10]; clinical

data from [6].
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3. Normal sinus rhythm time series. Heart rate in healthy subjects, even at rest, is
not strictly regular bul Muctuates in a complex way (bpm, beats/min). Furthermore,
there are sell-similar Muctuations on multiple ditferent orders of temporal
magnitude, a fractal lfeature of healthy variability. { Adapted from [8].)
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4. Normal sinus rhythm heart rate time series (top panel) from a 61 yvear old woman
reveals erratic fluctuations. The frequency spectrum (lower left panel) is broadband,
with a 1/f-like (inverse power-law) distribution, evident when the spectral data are
replotted on double log axes (lower right panel).
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spectrum (Fig. 2). While most of the fre-
quency content of the QRS is comprised
of frequencies below 20-30 He, there is a
small but important contribution of higher
frequencies, which go up to several
hundred Hz. Furthermore, spectral
analysis has indicated an inverse power-
law distribution to the frequency com-
ponents of the normal QRS. That is, a
graph of log QRS frequency versus log
power makes a good fit to a straight-line
plot with a negative slope [6, 7].

A theoretical argument has been made
that this broadband spectrum with its
inverse power-law distribution is
consistent with depolarization of the
myocardivm via an irregular, self-
similar branching network [3]. There-
fore, according to this fractal theory, the
[requency content of the QRS complex
is importantly related to the macro-
scopic structure of the His-Purkinje sys-
tem, and not exclusively to the
microscopic nature of the Purkinje-
myocardial cell interactions and local
wavelront propagation. Support for this
counterintuitive notion has come from
computer modeling studies in which a
self-similar branching network has been
used to depolarize a 3-dimensional net-
work of cells [9, 10]. Such experiments
reveal that with nine or ten generations
of conduction system branchings, one
can generate QRS complexes that are
essentially indistinguishable from those
seen clinically. Furthermore, the simu-
lated QRS complexes have a broadband
frequency spectrum comparable to that
observed physiologically (Fig.2). Such
models also confirm that changes in the
geometry of the branching conduction
system may alter the frequency content
of the QRS complexes, independent of
any changes in myocardial conduction.
This macroscopic fractal model of QRS
electrogenesis, based on myocardial ac-
tivation via an irregular conduction net-
work, 15 not inconsistent with
microscopic observations on the nature
of the Purkinje-subendocardial muscle
cell interface [13].

e Healthy Heartbeat

is a Temporal Fractal
As noted, the fractal concept can be
extended from geometry to dynamics, In
this latter context, one can describe certain
complex processes that do not have a char-
acteristic scale of time. The regulation of
the heart rate may be one such [ractal
process [6-8]. This notion has proven con-
troversial, in part because it runs counter
to the conventional dictum that the normal
heartbeat is highly regular (“regular sinus
rhythm™). Palpation of the pulse and ob-
servation of the electrocardiogram in a
healthy individual gives the appearance of
metronomic regularity. However, actual
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measurements of interbeat interval fluc-
tations reveal quite a different impres-
sion (Fig. 3).

Normal subjects, even those at rest,
show a high degree of heart rate
variability, which is not subjectively per-
ceptible. Furthermore. these fluctuations
are not simply those associated with
respiration. In fact, spectral analysis of
heart rate data from healthy subjects
shows a broadband spectrum with a so-
called 1/f-like distribution (Fig. 4). Note
that the term 1/f-like is synonymous with
the inverse power-law type of scaling
defined above, '

Another controversial aspect of the con-
cept of the fractal heartbeat relates to its
mechanism. The interbeat interval fluct-

ations of the healthy heart may be due, in
part, to intrinsic variability of autonomic
control (“chaos™) [8]. This hypothesis ap-
parently conflicts with the theory of
homeostasis enunciated by Walter B.
Cannon [14] and others, which states that
apparently erratic fluctuations of vari-
ables such as heart rate are due primarily
to external influences, and that the normal
condition of the cardiovascular system,
and of other physiologic systems, is that
of a steady state.A number of lines of
evidence support the countervailing
theory that deterministic chaos, not
homeostasis, is the “wisdom of the body™
[15]. The broadband spectrum of the heal-
thy heartbeat is consistent with, but not
diagnostic of, deterministic chaos, Addi-
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5. Heart rate time series from a healthy subject has complex variability.
Two-dimensional phase space plot reveals a complex trajectory suggestive of a
so-called strange attractor. Delay map plots heart rate in beats per minute {bpm) at
a given time against the heart rate after a fixed delay (in this case, 4 seconds), and
then tracks the evolution of this heart rate vector after an arbitrary time (also 4
seconds in this case). Data in this example and Fig. 6 were filtered with singular

value decomposition.
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tional tests for chaos include the measure-
ment of a finite correlation dimension and
of a positive Lyapunov exponent. Meas-
urement of these nonlinear metrics from
biologic data sets is fraught with potential
problems, which have been discussed in
detail elsewhere [16]. However, prelimi-
nary attempts to perform such measure-
ments from heart rate data have been
consistent with the hypothesis that these
fluctuations do in fact represent deter-
ministic chaos [17-19]. Finally, phase
space portraits (delay maps) of interbeat
interval time series are also consistent
with those of so-called strange (chaotic)
attractors (Fig. 5).

The mechanism for such physiclogic
chaos of the heartheat, if it exists, is not
certain. However, it is clear that heart rate
fluctuations are primarily due to
autonomic nervous system control and,
therefore, any chaos of the heartbeat must
reflect chaos in nervous system dynamics.
There is evidence for this kind of deter-
ministic chaos even in the nervous sys-
tems of more simple organisms [19].

haos and Disease

A corollary of the classical notion of

homeostasis relating health to con-
stancy is that disease and other perturba-
tions are likely to cause a loss of
regularity. The chaos hypothesis ad-
vanced above predicts just the opposite,
namely, a variety of disease states that
alter autonomic function may lead o a
loss of physiologic complexity and, there-
fore, to greater, not less regularty [8].
Support for this notion comes from the
comparison of heart rate time senies from
patients with a variety of different clinical
syndromes, including those at high risk of
sudden death and those with heart failure,
whose sinus rhythm dynamics are typical-
ly less complex than those seen normally
(Fig. 6) [20]. Similar changes are found in
experimental animals with severe cocaine
toxicity [21]. The term “complexity™ is
used here to include the fractal type of
variability described above, It should be
emphasized that quantifying losses of this
type of nonlinear complexity cannot be
accomplished by use of traditional statis-
tics such as varance. An illustration of
this principle comes from comparing two
signals, one a large amplitude sine wave
and the other a lower amplitude, highly
erratic signal. Clearly, the sine wave is less
complex despite its greater variance. This
observation is of more than theoretical
import, since there has been a flurry of
interest in recent vears in the analysis of
heart rate variability using conventional
slatistics.

Aging is also associated with a loss of
physiologic complexity [22, 23], We have
recently observed a reduction in both the
approximate dimension and approximate
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6. Normal sinus rhythm in healthy subjects (left) shows complex variability with a broad spectrum and a phase space plot
consistent with a strange (chaotic) attractor. Patients with heart disease may show altered dynamics, sometimes with oscillatory
sinus rhythm heart rate dynamics (middle) or an overall loss of sinus variability (right). With the oscillatory pattern, the
spectrum shows a sharp peak, and the phase space plot shows a more periodic attractor, with trajectories rotating about a

central hub. With the flat pattern, the spectrum shows an overall loss of power, and the phase space plot is more reminiscent of a
fixed-point attractor. [ Adapted from [8].)
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