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differences in the conception sex ratio related to individual pheno-
typic variation may require favourable environmental conditions,
whereas differences in the susceptibility of male and female fetuses
to nutritional stress may generate population-wide trends in annual
birth sex ratios. In the Rum red deer population, the action of one
mechanism swamped the other within about two generations. This
may explain why general trends in sex-ratio variation have been so
difficult to detect. M
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Methods

Since 1971, life history data have been collected on individual red deer (Cervus
elaphus) in the North Block of the Isle of Rum, Scotland, an area of about
12 km2 (ref. 18). We take as our measure of density the number of females of
more than one year old in the study area; since the cessation of culling in 1973,
density has risen from 57 to 178. Females produce at most one calf per year
throughout their breeding lifespan, whereas male reproductive success shows
greater variance; adult male weight is 1.7 times that of females, and male calves
are heavier at birth18. All animals in the study population are individually
recognizable; daily monitoring of the population during the calving season
shows whether or not each female calved in a given year, and, if so, the sex of her
offspring. An age-corrected dominance rank for each female, ranging from 0 to
1, is calculated from observations of interactions between pairs of individuals,
as described elsewhere.2 Females are also classified as to whether or not they
reared a calf the previous year that survived to six months. Average temperature
and total rainfall in the following periods were considered: August to October,
November to January, February to March. None of the weather variables
showed consistent change over the study period.

We report two forms of statistical analysis. The proportion of males born
each year (referred to as the annual birth sex ratio) was related to density
and weather measures using simple linear regression (normality of errors
was satisfied; 1973 was excluded owing to incomplete data collection). The
probability that an individual calf was male and the probability that a
female gave birth in a given year were analysed using generalized linear
mixed models28, with restricted maximum likelihood estimation of variance
components. Just as generalized linear models allow the extension of general
linear models to data where the errors are not normally distributed, GLMMs
allow similar extensions to the conventional mixed model case where the
response variable is determined by both random and fixed effects. In this case,
the random component arose because of repeated sampling within a year and
repeated sampling of the same females across years. Year and female identity
were therefore fitted as random effects. In both models, the response variables
were binary (male, not male; had calf, did not have calf), necessitating the use of
a logit link function. The significance of the explanatory terms, the fixed effects,
was assessed by their Wald statistics (distributed as x2) for each term when
fitted last in the model. All interaction terms were tested, but are not reported
unless statistically significant. Analysis was performed in Genstat 5, version 3.2.
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There is evidence that physiological signals under healthy con-
ditions may have a fractal temporal structure1. Here we investigate
the possibility that time series generated by certain physiological
control systems may be members of a special class of complex
processes, termed multifractal, which require a large number of
exponents to characterize their scaling properties2–6. We report
on evidence for multifractality in a biological dynamical system,
the healthy human heartbeat, and show that the multifractal
character and nonlinear properties of the healthy heart rate are
encoded in the Fourier phases. We uncover a loss of multifractality
for a life-threatening condition, congestive heart failure.

Biomedical signals are generated by complex self-regulating
systems that process inputs with a broad range of characteristics7,8.
Many physiological time series, such as the one shown in Fig. 1a, are
extremely inhomogeneous and non-stationary, fluctuating in an
irregular and complex manner. The analysis of the fractal properties
of such fluctuations has been restricted to second-order linear
characteristics such as the power spectrum and the two-point
autocorrelation function. These analyses reveal that the fractal
behaviour of healthy, free-running physiological systems is often
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characterized by 1/f-like scaling of the power spectra, S(f ), where f is
the frequency9–12.

Monofractal signals are homogeneous, in the sense that they have
the same scaling properties throughout the entire signal. Therefore,
monofractal signals can be indexed by a single global exponent—
the Hurst exponent H (ref. 13). Multifractal signals, on the other
hand, can be decomposed into many subsets characterized by
different local Hurst exponents h, which quantify the local singular
behaviour and thus relate to the local scaling of the time series.
Thus, multifractal signals require many exponents to characterize
their scaling properties fully4–6.

The statistical properties of the different subsets characterized by
these different exponents h can be quantified by the function D(h),
where D(h0) is the fractal dimension of the subset of the time series
characterized by the local Hurst exponent h0

2,4–6. Thus, the multi-
fractal approach for signals, a concept introduced in the context of
multi-affine functions14,15, has the potential to describe a wide class
of signals that are more complex than those characterized by a single
fractal dimension (such as classical 1/f noise).

We tested whether a large number of exponents is required to
characterize heterogeneous heartbeat interval time series (Fig. 1) by
undertaking multifractal analysis. The first problem is to extract the
local value of h. To this end, we used methods derived from wavelet
theory16. The properties of the wavelet transform make wavelet
methods attractive for the analysis of complex non-stationary time
series such as those found in physiological systems17. In particular,
wavelets can remove polynomial trends that could cause box-
counting techniques to fail to quantify the local scaling of the
signal18. Additionally, the time-frequency localization properties of
wavelets makes them particularly useful for revealing the underlying
hierarchy that governs the temporal distribution of the local Hurst
exponents19. Thus, the wavelet transform allows a reliable multi-
fractal analysis to be performed18,19. We used derivatives of the
gaussian function as the analysing wavelet, which allowed us to
estimate the singular behaviour and the corresponding exponent h
at a given location in the time series. The higher the order, n, of the
derivative, the higher the order of the polynomial trends removed
and the better the detection of the temporal structure of the local
scaling exponents in the signal.

We evaluated the local exponent h through the modulus of the
maxima values of the wavelet transform at each point in the time
series. We then estimated the scaling of the partition function Zq(a),
which is defined as the sum of the qth powers of the local maxima of
the modulus of the wavelet transform coefficients at scale a (ref. 19).
For small scales, we expect

ZqðaÞ . atðqÞ: ð1Þ

For certain values of q, the exponents t(q) have familiar meanings.
In particular, t(2) is related to the scaling exponent of the Fourier
power spectra, Sð f Þ,1=f b, as b ¼ 2 þ tð2Þ. For positive q, Zq(a)
reflects the scaling of the large fluctuations and strong singularities,
whereas for negative q, Zq(a) reflects the scaling of the small
fluctuations and weak singularities4,5. Thus, the scaling exponents
t(q) can reveal different aspects of cardiac dynamics.

Monofractal signals display a linear t(q) spectrum, tðqÞ ¼
qH 2 1, where H is the global Hurst exponent. For multifractal
signals, t(q) is a nonlinear function: tðqÞ ¼ qh 2 DðbÞ, where
h ¼ dt=dq is not constant. The fractal dimension D(h), introduced
earlier, is related to t(q) through a Legendre transform:

DðhÞ ¼ qh 2 tðqÞ: ð2Þ

We analysed both daytime (12:00 to 18:00) and night-time (0:00
to 6:00) heartbeat time series records from healthy subjects, and the
daytime records of patients with congestive heart failure. These data
were obtained by Holter monitoring20. Our database includes 18
healthy subjects (13 female and 5 male, with ages between 20 and 50,
average 34.3 years), and 12 congestive heart failure subjects (3
female and 9 male, with ages between 22 and 71, average 60.8
years) in sinus rhythm (see Methods for details on data acquisition
and preprocessing). For all subjects, for a broad range of positive
and negative q, the partition function Zq(a) scales as a power law
(Fig. 2a, b).

For all healthy subjects, t(q) is a nonlinear function (Figs 2c and
3a), which indicates that the heart rate of healthy humans is a
multifractal signal. Figure 3b shows that, for healthy subjects, D(h)
has non-zero values for a broad range of local Hurst exponents h.
The multifractality of healthy heartbeat dynamics cannot be
explained by activity, as we analyse data from subjects at night.
Furthermore, this multifractal behaviour cannot be attributed to
sleep-stage transitions, as we find multifractal features during day-
time hours as well. The range of scaling exponents (0 , h , 0:3)
with non-zero fractal dimension D(h) indicates that the fluctua-
tions in the healthy heartbeat dynamics exhibit anti-correlated
behaviour (h ¼ 1=2 corresponds to uncorrelated behaviour;
h . 1=2 corresponds to correlated behaviour).

In contrast, heart-rate data from subjects with a pathological
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Figure 1 Visualization of multifractality in the hearbeat. a, Consecutive heartbeat

intervals (in s) versus beat number for ,3 h data from a representative healthy

subject. The time series exhibits very irregular and nonstationary behaviour.

b, Top, the local Hurst exponents calculated for the 3h record shown in a. The

heterogeneity of the healthy heartbeat is represented by the broad range of local

Hurst exponents h (colours) present and the complex temporal organization of

the different exponents. Middle and bottom, the different fractal structures of two

subsets of the time series characterized by different local Hurst exponents. The

value of the local Hurst exponent for each subset is represented with a shade of

green and red, respectively. The two subsets displaydifferent temporal structures

which can be quantified by different fractal dimensions D(h). c, The local Hurst

exponents calculated for a monofractal signal—fractional Brownian motion with

H ¼ 0:6. The homogeneity of the signal is represented by the nearly mono-

chromatic appearance of the signal which indicates that the local Hurst exponent

h is the same throughout the signal and identical to the global Hurst exponent H.
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condition—congestive heart failure—show a clear loss of multi-
fractality (Fig. 3a, b). For the heart-failure subjects, t(q) is close to
linear and D(h) is nonzero only over a very narrow range of
exponents h, indicating monofractal behaviour (Fig. 3).

Our results show that, for healthy subjects, local Hurst exponents
in the range 0:07 , h , 0:17 are associated with fractal dimensions
close to one. This means that the subsets characterized by these local
exponents are statistically dominant. On the other hand, for the

heart-failure subjects, the statistically dominant exponents are
confined to a narrow range of local Hurst exponents centred at
h . 0:22. These results suggest that, for heart failure, the fluctua-
tions are less anti-correlated than for healthy dynamics, as the
dominant scaling exponents h are closer to 1/2.

We systematically compared our method with other widely used
methods of heart-rate time-series analysis12,21,22. Several of these
methods do not result in a fully consistent assignment of healthy
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Therefore, rather than evaluating the distribution of the inherently unstable local
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the maxima of the wavelet transform Zq(a) (using the third derivative of the
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Figure 3 Multifractality in healthy dynamics. a, Multifractal spectrum t(q) of the

group averages for daytime and night-time records for 18 healthy subjects and 12

patients with congestive heart failure. The results show multifractal behaviour for

the healthy group and different behaviour for the heart-failure group. b, Fractal
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the group average is broad, indicating multifractal behaviour. D(h) for the heart-
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for the heart-failure group may reflect perturbation of the cardiacneuroautonomic

control mechanisms associated with this pathology.
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versus diseased subjects (see http://polymer.bu.edu/,amaral/
Heart.html). Figure 4a shows the results of our method based on
the multifractal formalism. Each subject’s dataset is characterized by
three quantities: (1) the standard deviation of the interbeat inter-
vals; (2) the exponent value tðq ¼ 3Þ obtained from the scaling of
the third moment Z3(a); and (3) the degree of multifractality,
defined as the difference between the maximum and minimum
values of local Hurst exponent h for each individual (Fig. 5). The
multifractal approach robustly discriminates healthy subjects from
heart-failure subjects.

We next blindly analysed a separate database containing 10
records, 5 from healthy individuals and 5 from patients with
congestive heart failure. The time series in the new database are
shorter than those in our database; on average they are only 2-h long
(less than 8,000 beats). Figure 4b shows the projection on the x–y
plane of our data presented in Fig. 4a. The results for the blind test

are shown in black. Our approach clearly separates the blind test
subjects into two groups: 1, 3, 5, 6 and 10 fall in the healthy group,
and 2, 4, 7, 8 and 9 in the heart-failure group. Unblinding the test
code confirms these assignments. Thus, an analysis incorporating
the multifractal method may add diagnostic power to contemporary
analytic methods of heartbeat (and other physiological) time-series
analysis.

The multifractality of heart-beat time series also enables us to
quantify the greater complexity of the healthy dynamics compared
to those of pathological conditions. Power-spectrum analysis
defines the complexity of heart-beat dynamics through its scale-
free behaviour, identifying a single scaling exponent as an index
of healthy or pathological behaviour. Hence, the power spectrum
cannot quantify the greater level of complexity of the healthy
dynamics, reflected in the heterogeneity of the signal. In contrast,
the multifractal analysis reveals this new level of complexity by the
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because the linear correlations were preserved. These tests indicate that the

multifractality is related to nonlinear features of the healthy heartbeat dynamics,

rather than to the ordering or the distribution of the interbeat intervals in the time
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broad range of exponents necessary to characterize the healthy
dynamics. Moreover, the change in shape of the D(h) curve for the
heart-failure group may provide insight into the changes in the
cardiac control mechanisms resulting from this pathology.

To study the complexity of the healthy dynamics further, we
performed two tests with surrogate time series. First, we generated a
surrogate time series by shuffling the interbeat interval increments
of a record from a healthy subject. The new signal preserves the
distribution of interbeat interval increments but destroys the long-
range correlations among them. Hence, the signal is a simple
random walk, which is characterized by a single Hurst exponent
H ¼ 1=2 and exhibits monofractal behaviour (Fig. 5a). Second, we
generated a surrogate time series by performing a Fourier transform
on a record from a healthy subject, preserving the amplitudes of the
Fourier transform but randomizing the phases, and then perform-
ing an inverse Fourier transform. This procedure eliminates non-
linearities, preserving only the linear features of the original time
series. The new surrogate signal has the same 1/f behaviour in the
power spectrum as the original heart-beat time series; however, it
exhibits monofractal behaviour (Fig. 5a). We repeated this test on a
record from a heart-failure subject. In this case, there is a smaller
change in the multifractal spectrum (Fig. 5b). The results suggest
that the healthy heartbeat time series contains important phase
correlations which are cancelled in the surrogate signal by the
randomization of the Fourier phases, and that these correlations
are weaker in heart-failure subjects. Furthermore, our analysis
indicates that the observed multifractality is related to nonlinear
features of the healthy heartbeat dynamics. Several studies have
tested for nonlinear and deterministic properties in records of
interbeat intervals23–27. We have demonstrated an explicit relation
between the nonlinear features (represented by the Fourier phase
interactions) and the multifractality of healthy cardiac dynamics
(Fig. 5).

From a physiological perspective, the detection of robust multi-
fractal scaling in the heart-rate dynamics is of interest because it
indicates that the control mechanisms regulating the heartbeat
might interact as part of a coupled cascade of feedback loops in a
system operating far from equilibrium28,29. Furthermore, these
results indicate that the healthy heartbeat is even more complex
than previously suspected, posing a challenge to ongoing efforts to
develop realistic models of the control of heart rate and other
processes under neuroautonomic regulation. M
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Methods

Heart failure (CHF) data were recorded using a Del Mar Avionics Model 445
Holter recorder and digitized at 250 Hz. Beats were labelled using ‘Aristotle’
arrhythmia analysis software, which labels each detected beat as normal,
ventricular ectopic, supraventricular ectopic or unknown30. The location of the
R-wave peaks is determined with a resolution of 4 ms.

Healthy datasets were recorded using a Marquette Electronics series 8500
Holter recorder. Using a Marquette Electronics model 8000T Holter scanner,
the tapes were then digitized at 128 Hz, scanned and annotated. The
annotations were manually verified by an experienced Holter scanning
technician. The location of the R-wave peaks was thus determined with a
resolution of 8 ms.

The finite resolution implies that our estimates of the interbeat intervals are
affected by a white noise due to estimation error. The signal-to-noise ratio for
both healthy and heart failure is of the order of 100. Furthermore, the white
noise due to the measurements would lead to the detection of a local Hurst
exponent h ¼ 0 at very small scales. For that reason, we have considered only
scales larger than 16 beats.

From the beat annotation file, only the intervals (NN) between consecutive
normal beats were determined; thus intervals containing non-normal beats
were eliminated from the NN interval series. For the CHF data, an average of
2% (range, 0.1 to 0.6%) of the intervals were eliminated, and for the normal
data an average of 0.01% (range 0 to 0.06%) were eliminated. No interpolation
was done for eliminated intervals.

To eliminate outliers due to missed beat detections which would give rise to
erroneously large intervals that may have been included in the NN interval
series, a moving-window average filter was applied. For each set of five
contiguous NN intervals, a local mean was computed, excluding the central
interval. If the value of the central interval was greater than twice the local
average, it was considered to be an outlier and excluded from the NN interval
series. This criterion was applied to each NN interval in the series. For the CHF
data, an average of 0.02% (range 0 to 0.1%) of the intervals were eliminated,
and for the normal data an average of 0.07% (range 0 to 0.7%) were eliminated.
No interpolation was done for eliminated intervals. Overall a total of 2%
(range, 0.1 to 6%) of the total number of NN intervals were eliminated for the
CHF data and 0.08% (range 0 min to 0.7% max) for the normal data.

Next, we built a time series of increments between consecutive NN intervals
and calculated their standard deviation. We then identified all pairs of
associated increments with opposite signs and with an amplitude larger than
3 s.d. The values of the increments for each pair were replaced by linear
interpolations of their values and the time series of NN interval time was
reconstructed by integration from the filtered increments. About 1% of time
intervals were corrected by this procedure.
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